If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1000+4000/(1+r)+4500/(1+r)^2-48835.6/(1+r)^3=0
Domain of the equation: (1+r)!=0
We move all terms containing r to the left, all other terms to the right
r!=-1
r∈R
Domain of the equation: (1+r)^2!=0
r∈R
Domain of the equation: (1+r)^3!=0We add all the numbers together, and all the variables
r∈R
4000/(r+1)+4500/(r+1)^2-48835.6/(r+1)^3+1000=0
We calculate fractions
(4000*(r+1)^2*(r+1)^3)/((r+1)*(r+1)^2*(r+1)^3)+(4500*(r+1)*(r+1)^3)/((r+1)*(r+1)^2*(r+1)^3)+(-48835.6*(r+1)*(r+1)^2)/((r+1)*(r+1)^2*(r+1)^3)+1000=0
We calculate terms in parentheses: +(4000*(r+1)^2*(r+1)^3)/((r+1)*(r+1)^2*(r+1)^3), so:
4000*(r+1)^2*(r+1)^3)/((r+1)*(r+1)^2*(r+1)^3
We multiply all the terms by the denominator
4000*(r+1)^2*(r+1)^3)
Back to the equation:
+(4000*(r+1)^2*(r+1)^3))
We calculate terms in parentheses: +(4500*(r+1)*(r+1)^3)/((r+1)*(r+1)^2*(r+1)^3), so:
4500*(r+1)*(r+1)^3)/((r+1)*(r+1)^2*(r+1)^3
We multiply all the terms by the denominator
4500*(r+1)*(r+1)^3)
Back to the equation:
+(4500*(r+1)*(r+1)^3))
We calculate terms in parentheses: +(-48835.6*(r+1)*(r+1)^2)/((r+1)*(r+1)^2*(r+1)^3), so:We add all the numbers together, and all the variables
-48835.6*(r+1)*(r+1)^2)/((r+1)*(r+1)^2*(r+1)^3
We multiply all the terms by the denominator
-48835.6*(r+1)*(r+1)^2)
Back to the equation:
+(-48835.6*(r+1)*(r+1)^2))
(4000*(r+1)^2*(r+1)^3))+(4500*(r+1)*(r+1)^3))+(-48835.6*(r+1)*(r=0
| 5x+12=5x−75x+12=5x-7 | | 23(9x+6)=6x+ | | -t+5=-t-5 | | 1/1+x=20 | | 2x/0.2x=7.46 | | -4.9t^2+30.5t+9.7=0 | | -4n-1=-17 | | 5x-3(2x+5)=7(2x+1)-6 | | 4z-27=61 | | -9x-8+7x+3=7 | | 3(5x-1)=18 | | 26x19=12x-2 | | d/4=12/8 | | k/4-2=0 | | d/8=12/8 | | -4x12-3x=5 | | 3x–1.1=0.7 | | 2x2+7=42-x | | -5x+7=3x-25 | | 18/3x=42 | | 50y=90 | | x+-6+3x=4x+6 | | 120x=90 | | 3x=15+56 | | 625^2x+2=25 | | 3x+8-5x+2=30 | | 9y-4=-3 | | 3(x+4)+3x=8x-4 | | 12x+2=6x+4 | | 8+x/3=3 | | x/5=30/100 | | -3(x-2)-3x=36 |